Poster number # 74

A Pilot Study Aimed To Evaluate The Loss Of Carnitine During Intermittent (IHF) and Continuos Veno-Venous Hemofiltration (CVVH) In Acute Kidney Injury (AKI) Patients

A STOCK OF THE STO

¹Alfonso Pacitti, ¹Paola Inguaggiato, ¹Tiziana Papalia, ²Guido Martina, ³Vincenzo Cantaluppi ¹Nephrology and Dialysis Unit, Cuneo Hospital, Italy, ²Nephrology and Dialysis Unit, Chivasso Hospital, Italy, ³Nephrology, Dialysis and Kidney Transplantation Unit, University of Turin, Italy

BACKGROUND

Several studies reported that Carnitine species (CA) are subjected to a substantial loss during hemodialysis (HD), thus requiring a scheduled replacement. However, no data are available on CA loss induced by intermittent (IHF) or continuous (CVVH) hemofiltartion in AKI patients.

Levo-carnitine (L-CA), a small molecular weight solute unbound to plasma proteins, is mainly eliminated by a renal clearance of 1-3 mL/min, indicating an extensive (98-99%) tubular reabsorption. Basing on the rate of artificial clearance, during CVVH a loss of CA should be estimated >10 times greater than normal. The loss of CA during IHF or CVVH may contribute to the neuro/miopathy typically observed in critically ill patients. In addition, recent studies sugegsted that CA exerts a protective effect on AKI induced by ischemia-reperfusion injury, different nephrotoxic agents and sepsis. On this basis, loss of CA during IHF and CVVH may slow the recovery from AKI.

AIM OF THE STUDY

The aim of the study was to evaluate the depurative kinetic of different CA species during post-dilutional (PD) IHF and CVVH in patients with AKI compared to chronic kidney disease (CKD) patients in stable hemodialytic treatment.

METHODS

CA species (Laevo-, Acetyl-L- and Propionyl-L-carnitine) were dosed by chromatographic methods in 5 CKD patients treated by a single PD IHF session [Tab I] and in 5 AKI patients submitted to PD CVVH [Tab II].

CA plasma values (CAs) were corrected for Plasma Water (PW) exclusion, to compute the Sieving Coefficient (SC) by the ratio of CA effluent (EF) (CAEF) to CA PW (CAPW) concentrations.

In CKD patients, CAEF were also measured on total EF collection. In another group of AKI patients (n=5), L-CA levels were measured daily during CVVH treatment [Tab III].

Pt Code	Gender	Age	Disease	Treatme nt type	A STATE OF THE PARTY OF THE PAR	2000 200 to 100	HD Duration Min
ANG	M	60	DM	HD	2.63	Yes	240
DIB	M	70	DM	HD	4 .83	No	266
FED	F	80	NAS	HD	1.6	No	232
GRA	M	49	GN	HD	2.88	NO	240
LAM	F	72	VAS	HD	3.12	NO	240

TAB I Patients with Chronic renal failure submitted to a HF session (DM = diabetes in	m
NAS= nephroangiosclerosis, GN = Glomerulonephritis, VAS= Wegener M.)	

NAME	Gender	Age	Days from ICU admittance	AKI cause	RIFLE	Outcome
BEGN.	M	69	9	neoplasia	F	
FIEC.	M	58	15	Sepsis	F	Death
CATT	M	78	10	CHF,	I	
GEN	F	76	0	ATN	F	
RON	M	62	13	Heart Tx	F	Death

ab II	Acute Renal Failure Patients performing CVVH (ATN= Acute Tubular Necrosis
HF =	Congestive Heart Failure, OHS, open heart surgery, Tx = transplantation)

Name	Diagnosis	Age (Yr)	Sex	RIFLE	OUTCOME	Dyalisis duration
SF (CHF/WL heart graft	43	M	F	FR	12
CL (CHF/ BPAoC/ECMO	52	M	F	Death	16
PA F	Post-BPAoC/ septum recostruction	55	M	F	FR	15
TF S	Septic shock post Heart tx	59	M	F	Death	16
RG S	Septic shock post Heart tx	62	M	F	FR	13

107-						
TAB III: AKI	patients	followed along	CRRT	period with	pre-session I	-CA

ANC	G	L-Car	nitine (nm	ol/mL)	Acetyl-L-	carnitine (nmol/ml)	ropionyl-	L-carnitine	e (nmol/m
Time (mi	in)	Plasm	Effluent	Sc	Plasma	Effluente	Sc	Plasma	Effluente	Sc
	15	287	279	0,97	81	88	1,09	5,66	5,82	1,03
	60	215	220	1,02	60	69	1,15	4,23	4,6	1,09
/20	120	193	200	1,04	49	57	1,16	3,49	3,72	1,07
10.	180	156	162	1,04	41	43	1,05	2,9	2,88	0,99
	240	129	129	1	32	35	1,09	2,02	2,15	1,06
3		9		1,01			1,108			1,048
DIB	9	Plasm	Effluent	Sc	Plasm	Effluent	Sc	Plasm	Effluent	Sc
	15	22,26	19,13	0,86	3,82	4,12	1,08	0,29	0,26	0,9
32	60	20,29	16,85	0,83	3,38	3,44	1,02	0,21	0,22	1,05
3	120	14,17	14,8	1,04	2,64	2,93	1,11	0,19	0,19	-1
	180	12,09	13,77	1,14	2,67	3,42	1,28	0,17	0,2	1,18
	240	10,73	10,76	1	3,45	3,78	1,1	0,15	0,15	S1
				0,97			1,118			1,026
FED		Plasm	Effluent	Sc	Plasm	Effluent	Sc	Plasma	Effluent	Sc
	15	17,45	17,41	1	3,46	3,87	1,12	0,18	0,16	0,89
	60	13,83	14,29	1,03	2,62	3,21	1,23	0,13	0,12	0,92
72	120	11,48	11,46	1	2,22	2,56	1,15	0,08	0,09	1,13
	180	10,45	9,91	0,95	2,54	2,68	1,06	0,07	0,08	1,14
	240	9,21	9,16	0,99	2,28	2,74	1,2	0,06	0,06	1
8		0 S		0,99			1,152	3		1,016
LAM		Plasm	Effluent	Sc	Plasma	Effluente	Sc	Plasma	Effluente	Sc
	15	27,12	27,76	1,02	4,83	5,54	1,15	0,18	0,2	1,11
0	60	21	19,95	0,95	4,19	4,91	1,17	0,13	0,15	1,15
	120	18,89	18,18	0,96	4,12	4,44	1,08	0,13	0,12	0,92
	180	18,32	18,4	1	3,47	3,83	1,1	0,11	0,13	1,18
69 00	240	16,95	16,2	0,96	3,09	3,89	1,26	0,16	0,15	0,94
				0,97			1,152			1,06
GRA		Plasma	Effluente	Sc	Plasma	Effluente	Sc	Plasma	Effluente	Sc
69 01	15	28,9	27,96	0,97	6,86	7,69	1,12	0,36	0,41	1,14
	60	23,7	24,22	1,02	5,66	6,42	1,13	0,31	0,33	1,06
72.	120	20,57	21,13	1,03	4,68	5,38	1,15	0,27	0,3	1,11
10	180	17,5	17,4	0,99	3,74	4,36	31773	0,2	0,23	
	240	***********	16,99	1000000	3,32	3,75	1,13	0,19	13090203	1
0		8		1,00			1,14			1,092
78							0.102		9 12	111
Mean	of N	lean SC:		0,993			1,134			1,048
DS				0,016			0,020		- 3	0,031
Calling and annual or		and the second of the second of the second	And the second second	100000000000000000000000000000000000000	62	100		62		

Tab IV CRF Patient: Plasma (C) / Effluent (UF) water concentrations SC are calculated .	Plasma and effluent	Area Und
Curve (AUC) of individual patients are reported.		

Lower Confidence Int (p=0.01)

		L-Carnitine		Ac	etyl-L-carnit	ine	Propiony	-L-carnitine	(nmol/ml)
BEGN		(nmol/mL)	5		(nmol/ml)));	090 CE
Time	PW	EF	SC_co	PW	EF	SC_c2	PW	EF	SC_c3
0	42.94			5.88		5	0.66		
30	43.36	43.84	1,01	5.95	6.12	1,02	0.66	0.67	1,00
180	39.16	30.94	0,78	4.61	4.06	0,88	0.56	0.48	0,84
FIECH									101025-101
Time	C0 (µM)	UF (C0)	SC_co	C2 (µM)	UF (C2)	SC	C3 (µM)	UF (C3)	SC
0	123.2			12.83			2.11		2727533
30	110.4	95.88	0,86	12.15	11.57	0,95	1.88	1.66	0,88
180	88.25	88.06	0,99	10.54	11.17	1,05	1.56	1.55	0,99
CATT							· ·		
Time	C0 (µM)	UF (C0)	SC_co	C2 (µM)	UF (C2)	SC	C3 (µM)	UF (C3)	SC
0	34.88			4.65			0.6		
30	31.57	30.02	0,95	4.26	4.33	1,01	0.51	0.51	0,99
180	30.12	29.15	0,96	4.1	4.1	0,99	0.47	0.48	1,00
GEN							10		
Time	C0 (µM)	UF (C0)	SC_co	C2 (µM)	UF (C2)	SC	C3 (µM)	UF (C3)	SC
0	69.29			28.06			1.04	A	
30	63.36	63.64	1,00	25.54	27.6	1,08	0.9	0.97	1,07
180	56.7	53.68	0,94	20.46	21.98	1,07	0.77	0.83	1,07
RON									
Time	C0 (Mm)	UF (C0)	SC_co	C2 (µM)	UF (C2)	SC	C3 (µM)	UF (C3)	SC
0	7.23			1.08			0.08		
30	6.35	5.68	0,89	0.97	0.92	0.95	0.07	0.06	0.81
180	5.23	5.06	0,96	0.81	0.82	1,01	0.04	0.05	1,08
		8 8	3		3		**	Conf Ir	nterval
Tah V	AKI Patiant	· Placma wat	ter (C) / Ess	uent (UF) co	ncentrations		MEAN SD	up. Limit	lo. Limi
				plasma / efflu					

C2 1,15 0,06 1,13 0,86

	L-C	arnitine	Days of
Name	(Start CVVH)	(during CVVH)	Treatment
SF	23,98	10,56	12
CL	30,12	7,19	16
PA	26,67	6,94	15
TF	28,34	3,15	16
RG	25,31	6,91	13
Mean	26,88	6,95	14,40
SD	2.43	2,62	1,82
P =	0,00058907		3

Mean	16,39	10,43	10,55	5,82
SD	7,87	4,94	7,33	2,11

CO C2 C3 Urea

11,46 9,48 10,31 5,43

12,85 5,05 0,28 3,08

28,14 10,18 15,32 8,00

13,10 17,01 16,28 6,76

TAB VII Ca species plasma rebound measured 30' min after the end of the HF session (% of the end session levels)

TAB VI: AKI patients followed along a CRRT per

RESULTS

In CKD [Tab IV] as well as AKI [Tab V] patients, the mean SC values of every CA species were into the lower limit of confidence of 1.0 (p< 0.01), indicating the identity among CAPW and CAEF and a complete passage through the membrane.

In the AKI group on CRRT, the plasma CAs significantly decreased from 26,88 \pm 2,4 to 6,95 \pm 2,6 μ M/L in a period of 14,4 \pm 1,8 days. [Tab VI]

In CKD patients on IHF, a decrease of CA during the session was observed with a rebound at 30' after the end (slower equilibration of inner body compartments) [Tab VII]. CA kinetic in all CKD patients is reported in Fig. 1

The total loss of CA species measured on EF collection was proportional to CA income and CAs: the only CKD patient in treatment with L-CA (1g i.v. 3 times/week) had a loss of 583±29 mg compared to the average value of 52.6±14 of the other cases.

CONCLUSIONS

Prolonged intense CVVH treatment was associated with a daily loss of hundred of milligrams of L-CA.

The SC observed in PD CVVH and confirmed in PD IHF suggested that CA was efficiently removed by convection-based techniques.

CA loss could be hardly compensated by endogenous synthesis for the slow subtraction and the substantial equilibration of the body compartments.

The depletion of CA body pool during CVVH may be a co-factor for critical illness neuro/miopathy and organ dysfunction. The lack of CA may contribute to mitochondrial dysfunction and delayed tissue regeneratio in spesis-associated AKI (Fig. 2).

